Statistical mechanics of bubbly liquids
نویسندگان
چکیده
The dynamics of bubbles at high Reynolds numbers is studied from the viewpoint of statistical mechanics. Individual bubbles are treated as dipoles in potential flow. A virtual mass matrix of the system of bubbles is introduced, which depends on the instantaneous positions of the bubbles, and is used to calculate the energy of the bubbly flow as a quadratic form of the bubbles’ velocities. The energy is shown to be the system’s Hamiltonian and is used to construct a canonical ensemble partition function, which explicitly includes the total impulse of the suspension along with its energy. The Hamiltonian is decomposed into an effective potential due to the bubbles’ collective motion and a kinetic term due to the random motion about the mean. An effective bubble temperature—a measure of the relative importance of the bubbles’ relative to collective motion—is derived with the help of the impulse-dependent partition function. Two effective potentials are shown to operate: one due to the mean motion of the bubbles, dominates at low bubble temperatures, where it leads to their grouping in flat clusters normal to the direction of the collective motion, while the other, temperature-invariant, is due to the bubbles’ position-dependent virtual mass and results in their mutual repulsion. Numerical evidence is presented for the existence of the effective potentials, the condensed and dispersed phases, and a phase transition. © 1996 American Institute of Physics. @S1070-6631~96!00404-0#
منابع مشابه
Effect of direct bubble-bubble interactions on linear-wave propagation in bubbly liquids.
We study the influence of bubble-bubble interactions on the propagation of linear acoustic waves in bubbly liquids. Using the full model proposed by Fuster and Colonius [J. Fluid Mech. 688, 253 (2011)], numerical simulations reveal that direct bubble-bubble interactions have an appreciable effect for frequencies above the natural resonance frequency of the average size bubble. Based on the new ...
متن کاملModes of self-organization of diluted bubbly liquids in acoustic fields: One-dimensional theory.
The paper is dedicated to mathematical modeling of self-organization of bubbly liquids in acoustic fields. A continuum model describing the two-way interaction of diluted polydisperse bubbly liquids and acoustic fields in weakly-nonlinear approximation is studied analytically and numerically in the one-dimensional case. It is shown that the regimes of self-organization of monodisperse bubbly li...
متن کاملImprovement of acoustic theory of ultrasonic waves in dilute bubbly liquids.
The theory of the acoustics of dilute bubbly liquids is reviewed, and the dispersion relation is modified by including the effect of liquid compressibility on the natural frequency of the bubbles. The modified theory is shown to more accurately predict the trend in measured attenuation of ultrasonic waves. The model limitations associated with such high-frequency waves are discussed.
متن کاملEffective equations for wave propagation in bubbly liquids
We derive a system of effective equations for wave propagation in a bubbly liquid. Starting from a microscopic description, we obtain the effective equations by using Foldy's approximation in a nonlinear setting. We discuss in detail the range of validity of the effective equations as well as some of their properties.
متن کامل